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Abstract. The dynamical evolution of small systems undergoing a chiral symmetry breaking transition
in the course of rapid expansion is discussed. The time evolution of the dynamical correlation length for
trajectories passing through a second-order critical point is extracted. It is shown that while the maximum
value of the correlation length is bound from above by dynamical effects, the time interval during which
it is near its maximum grows steadily with the system size and with decreasing expansion rate.
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1 Introduction

The main goal of colliding heavy ions at high energies is to
produce matter at high temperature and baryon density.
In matter at such extreme conditions chiral symmetry may
be approximately restored (for a review of signatures for
hot and dense matter see e.g. [1]). In particular, it has
been argued that a line of first-order phase transitions in
the phase diagram of QCD could end in a second-order
critical point, where the correlation length diverges [2].
The critical point in the temperature vs. baryon-chemical
potential plane has been located on the lattice [3]. Here,
we study the dynamics of the chiral fields near a critical
point and determine the behavior of the correlation length
in finite and rapidly expanding systems, such as the ones
encountered in heavy-ion collisions.

2 Chiral hydrodynamics

In Chiral Hydrodynamics [4,5] it is assumed that the long-
wavelength (classical) modes of the chiral fields evolve in
the effective potential generated by the thermalized de-
grees of freedom, which are the matter fields (and possi-
bly also hard modes of the chiral field). In our model, the
latter are described as a perfect relativistic fluid, whose
equation of state is in turn determined by the chiral field
(via the effective mass), and which can exchange energy
and momentum with the chiral fields. The chiral symme-
try breaking dynamics is described by an effective field
theory, in our case the SU(2)×SU(2) linear σ-model:

L = q [iγµ∂µ − g(σ + γ5τ · π)] q

+
1
2

(∂µσ∂µσ + ∂µπ∂µπ) − U(σ, π) . (1)

The potential U(σ, π), which exhibits both spontaneously
and explicitly broken symmetry, is given by

U(σ, π) =
λ2

4
(σ2 + π2 − v2)2 − hqσ . (2)

Here q is the constituent-quark field q = (u, d). The scalar
field σ and the pseudoscalar field π together form a chiral
field φ = (σ, π). The vacuum expectation values of the
condensates are 〈σ〉 = fπ and 〈π〉 = 0, where fπ = 93 MeV
is the pion decay constant.

For g > 0, the finite-temperature one-loop effective
potential includes a contribution from the quarks, and is
given by

Veff(φ, T ) = U(φ) − dq

∫
d3p

(2π)3
T log

[
1 + e−E/T

]
(3)

Veff depends on the order parameter field through the ef-
fective mass of the quarks, mq = g|φ|, which enters the
expression for the energy E.

For sufficiently small g one finds a smooth transition
between the two phases. For large coupling, however, the
effective potential exhibits a first-order phase transition [6].
Along the line of first-order transitions the effective po-
tential has two minima. At T = Tc these two minima are
degenerate and are seperated by a barrier. As one lowers
the value of g the barrier gets smaller and the two minima
approach each other. At gc � 3.7, finally, the barrier va-
nishes, and so does the latent heat. Below, we study the
hydrodynamic expansion near this chiral critical point.

The classical equations of motion for the chiral fields
are

∂µ∂µφ +
δVeff

δφ
= 0 (4)

The dynamical evolution of the thermalized degrees of fre-
edom (fluid of quarks) is determined by the local conser-
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vation laws for energy and momentum. Note that we do
not assume that the chiral fields are in equilibrium with
the heat bath of quarks. Hence, the fluid pressure p de-
pends explicitly on |φ|, see [5] for more details. Due to the
interaction between fluid and field the total energy and
momentum is the conserved quantity:

∂µ

(
Tµν

fluid + Tµν
φ

)
= 0. (5)

We emphasize that we employ (4) not only to propa-
gate the mean field through the transition but fluctuations
as well. The initial condition includes some generic “pri-
mordial” spectrum of fluctuations (see below) which then
evolve in the effective potential generated by the matter
fields. Near the critical point, those fluctuations have small
effective mass and “spread out” to probe the flat effective
potential.

3 Correlation Length

The correlation length provides a measure for the typical
length scale over which fluctuations of the fields are corre-
lated. Following the Ginzburg-Landau theory, for an infi-
nite system in global thermal equilibrium one can expand
the free energy F arround the thermodynamic expecta-
tion value φ0 – which is given by the minimum of the free
energy – in a power series:

F (φ̄) = a0 + a1φ̄ + a2φ̄
2 + a3φ̄

3 + a4φ̄
4 + . . . + aNφ̄N (6)

where φ̄ = φ−φ0
fπ

and aN > 0. The correlation length ξ is
defined as the second derivative of the free energy

1
ξ2 =

d2F (φ̄)
dφ̄2

∣∣∣∣
φ̄=0

= 2a2. (7)

The correlation length is finite for T �= Tc since the effec-
tive potential has a finite curvature there. At Tc the poten-
tial about φ0 becomes flat and thus the correlation length
diverges as the system approaches the critical point. Of
course, this can only be true for an infinite system in glo-
bal thermodynamic equilibrium. In high-energy heavy ion
collisions instead one deals with finite and rapidly expan-
ding systems where the true dynamical correlation length
is finite.

4 Results

4.1 Initial conditions

To study the effects of a finite and expanding system we
choose the following initial conditions. The distribution of
the fluid energy density at t = 0 is taken to be spherical:

e(t = 0, r) = eeq Θ(R − r) , (8)

where eeq denotes the equilibrium value of the energy den-
sity taken at a temperature of Ti ≈ 160 MeV which is well

above the transition temperature Tc ≈ 138 MeV. R deno-
tes the initial size of the system. For the fluid velocity we
assume a linear profile

vr(t = 0, r) =
r

R
Θ(R − r) . (9)

Note that the expansion rate (Hubble constant) equals
1/R, hence larger systems also correspond to less rapid
expansion.

The initial conditions for the chiral fields are

σ(t = 0,x) = δσ(x) + fπ +

(−fπ + σeq) ·
[
1 + exp

(
r − R

a

)]−1

π(t = 0,x) = δπ(x) , (10)

a = 0.3 fm is the surface thickness of this Woods-Saxon
like distribution. Here σeq ≈ 0 is the value of the σ field
corresponding to eeq. Thus, the chiral condensate nearly
vanishes at the center, where the energy density of the
quarks is large, and then quickly interpolates to fπ where
the matter density is low.

δσ(x) and δπ(x) represent Gaussian random fluctua-
tions of the fields. We correlate them over an initial cor-
relation length of ξ0 ≈ 1.2 fm as described in [5]. Our fo-
cus now is on how those “primordial” fluctuations evolve
through the transition and how the correlation length de-
pends on the system size.

4.2 Extraction of correlation length

To analyse the time evolution of ξ in our finite and ex-
panding system we need to know the dynamical effective
potential probed by the fluctuating fields. This is done by
extracting a histogram of the field distribution at every
time step, within a sphere of radius 1 fm around r = 0.
This histogram has been averaged over a few random in-
itial field configurations, picked according to (10).

The probability distribution is related to the 4-d effec-
tive action by

P [φ] ∝ exp {−Seff} , (11)

and thus we can extract the effective action ”seen” by the
chiral fields by fitting a polynomial of the form (6) to

Seff(φ) ∝ − log{P [φ]} . (12)

4.3 Numerical results

Figure 1 depicts the time evolution of the extracted cor-
relation length ξ for different system sizes. Evidently, the
correlation length is always finite. For a system of initial
radius R = 1 fm, ξ(t) ≈ ξ0 remains approximately con-
stant during the expansion, equal to the initial correlation
length. However, for larger R, it develops a maximum at
intermediate times, roughly twice ξ0. Its maximum value
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appears to grow only very slowly with R (once R ≥ 3 fm),
i.e. the approach towards ξ = ∞ for R → ∞ is slow. Both
observations are in line with [7] who studied finite-time ef-
fects for infinitely large systems, and estimated that ξ can
not exceed 2−3 times ξ0, and that the maximum value of
ξ grows only slowly with decreasing cooling rate. This im-
plies that experimental observables will not exhibit “fully
developped” critical behavior even for trajectories through
the critical point. On the other hand, one might hope for
some signals to show up even for trajectories that miss the
critical point somewhat, since the growth of ξ is damped
by dynamical effects anyways. We also observe from our
real-time analysis that the time interval during which ξ
is near its maximum grows steadily with R. This might
be relevant for observables that integrate over the entire
collision history.

The behavior of other couplings ai (i > 2) belonging
to marginal or irrelevant operators will be reported else-
where.
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Fig. 1. Time evolution of the correlation length ξ for finite
and expanding systems of different initial radius R.
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